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The Variational Quantum Eigensolver (VQE) is a hybrid quantum–classical 
algorithm proposed for estimating electronic energies on noisy 
intermediate-scale quantum devices. In this work, a theoretical discussion of 
the VQE applied to chemistry is presented, covering its variational 
formulation, the second-quantized representation of the electronic 
Hamiltonian, the mapping to qubits, and the use of ansätze inspired by 
electronic structure methods. The aim is to contextualize the VQE within 
modern quantum chemistry and discuss its potential and limitations. 

 

 

 

 

 

O Variational Quantum Eigensolver (VQE) é um algoritmo híbrido 
quântico-clássico proposto para o cálculo de energias eletrônicas em 
dispositivos quânticos ruidosos de curto prazo. Neste trabalho, apresenta-se 
uma discussão teórica do VQE aplicado à química, abordando sua formulação 
variacional, a representação do Hamiltoniano eletrônico em segunda 
quantização, o mapeamento para qubits e o uso de ansatz inspirados em 
métodos de estrutura eletrônica. O objetivo é contextualizar o VQE no 
panorama atual da química quântica e discutir suas potencialidades e 
limitações. 
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Introdução 
A determinação precisa da energia eletrônica de 

moléculas é um dos problemas centrais da química 
quântica.1 Métodos clássicos baseados na mecânica 
quântica permitem descrever essas propriedades, mas 
rapidamente se tornam computacionalmente custosos à 
medida que o tamanho do sistema cresce.2  Nesse contexto, 
a computação quântica surge como uma alternativa 
promissora. Entre os algoritmos propostos para aplicações 
no curto prazo, o Variational Quantum Eigensolver (VQE) 
destaca-se por ser um método híbrido quântico-clássico 
adequado às limitações atuais do hardware quântico.1  

 
A mecânica quântica constitui um dos pilares 

fundamentais da ciência moderna. Desde o estabelecimento 
de seus fundamentos teóricos nas primeiras décadas do século 
XX, com contribuições decisivas de Planck, Einstein, Bohr, 
Schrödinger, Heisenberg e Dirac, essa teoria revolucionou a 
compreensão da matéria em escala microscópica.3 O período 
de 1925–1926, marcado pela formulação da mecânica 
matricial e da equação de Schrödinger, é frequentemente 
considerado o nascimento formal da mecânica quântica. 
Assim, o ano de 2025 representa simbolicamente o centenário 
dessa teoria, cujo impacto científico e tecnológico permanece 
profundo e crescente.4 

 
Na química, a mecânica quântica forneceu a base 

conceitual para a descrição microscópica da estrutura da 
matéria. A partir dela, tornou-se possível compreender a 
natureza das ligações químicas, interpretar espectros 
moleculares, descrever superfícies de energia potencial e 
prever propriedades termodinâmicas e cinéticas de sistemas 
moleculares. A química quântica, enquanto área consolidada, 
tem como objetivo central resolver, ainda que 
aproximadamente, a equação de Schrödinger associada a 
sistemas de muitos elétrons, permitindo a obtenção de 
propriedades químicas a partir de primeiros princípios (ab 
initio).1 

 
O ponto de partida formal desses estudos é a equação 

de Schrödinger independente do tempo, 
 

 𝐻
^
Ψ = 𝐸Ψ (1) 

 

em que  é o operador Hamiltoniano do sistema, Ψ é a 𝐻
^

função de onda eletrônica e 𝐸 representa a energia associada 
ao estado considerado. Apesar de sua forma compacta, a 
solução dessa equação para sistemas moleculares reais é 
desafiadora. A presença do termo de repulsão elétron–elétron 
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acopla o movimento de todas as partículas fazendo com que a 
dimensão do espaço de Hilbert, cresça exponencialmente com 
o número de elétrons e orbitais considerados.1 

Ao longo das últimas décadas, diversos métodos 
computacionais clássicos foram desenvolvidos para contornar 
esse problema, incluindo o método de Hartree–Fock, a teoria 
do funcional da densidade (DFT) e métodos 
pós-Hartree–Fock, como interação de configurações (CI), 
teoria de perturbação de Møller–Plesset (MP2) e Coupled 
Cluster. Embora esses métodos tenham alcançado grande 
sucesso, apresentam limitações importantes. Destacam-se, em 
especial, as dificuldades no tratamento de sistemas fortemente 
correlacionados e na obtenção simultânea de alta precisão e 
escalabilidade computacional.5 

 
Nesse contexto, a computação quântica surge como 

uma possível alternativa para o problema da estrutura 
eletrônica. A ideia de utilizar sistemas quânticos controláveis 
para simular outros sistemas quânticos foi idealizada de forma 
pioneira por Feynman, que observou que a simulação 
eficiente de sistemas quânticos é, em geral, inviável em 
computadores clássicos. Em princípio, computadores 
quânticos podem representar estados quânticos complexos de 
forma exponencialmente mais eficiente, explorando 
superposição e emaranhamento. 

 
Os dispositivos quânticos atualmente disponíveis, no 

entanto, ainda são limitados em número de qubits, 
profundidade de circuitos e fidelidade das operações. Esses 
dispositivos são conhecidos como computadores NISQ (Noisy 
Intermediate-Scale Quantum). Nesse regime, algoritmos 
quânticos tradicionais tornam-se impraticáveis, devido aos 
erros causados por ruído e interferência. Como alternativa, 
algoritmos variacionais híbridos foram propostos, 
combinando medições em hardware quântico com rotinas de 
otimização clássicas.1 

 
Entre esses algoritmos, o Variational Quantum 

Eigensolver (VQE) destaca-se como uma das abordagens 
mais promissoras para aplicações em química quântica no 
curto e médio prazo. Baseado no princípio variacional da 
mecânica quântica, o VQE permite estimar a energia do 
estado fundamental de Hamiltonianos moleculares utilizando 
circuitos quânticos relativamente rasos, tornando-o mais 
compatível com as limitações dos dispositivos atuais, já que 
utilizando os dispositivos quânticos em somente uma parte do 
cálculo, os erros são mitigados.6 

 

Metodologia 
Para o desenvolvimento deste artigo, realizou-se uma 

busca bibliográfica específica nos periódicos Google 
Acadêmico, Periódicos CAPES, PubMed, SciELO, Wiley 
Online Library e ACS Publications acessadas por meio do 
acesso gratuito concedido a estudantes da Universidade de 
Brasília (UnB) pela Coordenação de Aperfeiçoamento de 
Pessoal de Nível Superior (CAPES), através da Comunidade 
Acadêmica Federada (CAFe). Utilizaram-se as 
palavras-chave “Computação Quântica”, “Química”, 
“Química Quântica”, “VQE” e “NISQ”. Por se tratar de uma 
área em ascensão, com grandes evoluções em curtos períodos 
de tempo, foram considerados, para as aplicações, artigos 
publicados entre 2024 e 2026, a fim de obter as informações 
mais recentes sobre o tema. 

 

Resultados e discussão  
No âmbito da química quântica, a determinação da 

energia eletrônica de uma molécula constitui um problema 
central, pois dela derivam propriedades estruturais, 
espectroscópicas e reativas. Partindo da equação de 
Schrödinger para um sistema molecular composto por núcleos 
e elétrons, é comum empregar a aproximação de 
Born–Oppenheimer, na qual se explora a diferença de massas 
entre núcleos e elétrons para separar os movimentos nuclear e 
eletrônico.1 

Sob essa aproximação, as posições nucleares são 
consideradas fixas, e o problema reduz-se à resolução da 
equação de Schrödinger eletrônica, 
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em que  é o número de elétrons e  é o Hamiltoniano 𝑁
𝑒
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Aqui,  e  representam, respectivamente, a carga 𝑍
𝐴

𝑅
𝐴

e a posição do núcleo A, enquanto  corresponde à 𝑉
𝑁𝑁
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repulsão núcleo–núcleo, que é constante devido a 
aproximação Born–Oppenheimer.1 

 

O principal desafio desse problema reside no termo 
de repulsão elétron–elétron, que introduz correlação entre 
todos os elétrons do sistema.7 Como consequência, a função 
de onda eletrônica depende simultaneamente das coordenadas 
de todos os elétrons, e a dimensão do espaço de Hilbert cresce 
exponencialmente com o número de orbitais considerados. 
Esse crescimento exponencial torna inviável a obtenção de 
soluções exatas para sistemas moleculares de tamanho 
moderado ou grande em computadores clássicos.8 

 

Métodos aproximados clássicos, como 
Hartree–Fock, tratam a correlação eletrônica de forma média, 
enquanto métodos pós-Hartree–Fock incorporam correções 
sistemáticas ao custo de maior esforço computacional.9 Ainda 
assim, a escalabilidade desses métodos permanece um 
obstáculo fundamental, motivando a busca por novas 
abordagens computacionais. 

 

Computação quântica 

A computação quântica baseia-se nos princípios da 
mecânica quântica para o processamento de informação. A 
unidade fundamental de informação é o qubit, que pode ser 
descrito como uma superposição linear de dois estados base, 

 |ψ⟩ =  α|0⟩ +  β|1⟩

 
(4) 

Com , sistemas de múltiplos qubits α| |2 + β| |2 = 1
podem exibir emaranhamento, permitindo correlações 
quânticas que não possuem análogo clássico.10 

A relevância da computação quântica para a química 
foi reconhecida desde os trabalhos pioneiros de Feynman, que 
observou que a simulação eficiente de sistemas quânticos é, 
em geral, inviável em computadores clássicos. Em princípio, 
um computador quântico pode representar estados quânticos 
complexos de forma natural, evitando a explosão exponencial 
de recursos observada em simulações clássicas.1 

 

Entretanto, os dispositivos quânticos atualmente 
disponíveis pertencem à chamada era NISQ (Noisy 
Intermediate-Scale Quantum), caracterizada por um número 

limitado de qubits e pela presença significativa de ruído.11 
Nesse regime, algoritmos quânticos profundos e tolerantes a 
falhas ainda não são realizáveis experimentalmente, o que 
motivou o desenvolvimento de algoritmos híbridos 
quântico-clássicos. 

 

 

Formulação teórica do VQE 

O Variational Quantum Eigensolver (VQE) é um 
algoritmo híbrido que explora o princípio variacional da 
mecânica quântica. De acordo com esse princípio, para 
qualquer estado quântico normalizado ∣ψ(θ)⟩, o valor 
esperado da energia satisfaz a desigualdade 

 

                𝐸⟨ψ(θ)|𝐻
^
|ψ θ( ) = 𝐸 θ( ) ≥ 𝐸

0

 

(5) 

onde  é a energia exata do estado fundamental do 𝐸
0

Hamiltoniano.1 

 

No VQE, escolhe-se uma família parametrizada de 
estados quânticos, denominada ansatz, que depende de um 
conjunto de parâmetros reais θ. O problema da estrutura 
eletrônica é então reformulado como um problema de 
otimização variacional 

 

                 𝐸
0
≈𝑚𝑖𝑛

      θ
⟨ψ θ( )⟩

 

(6) 

A avaliação do valor esperado da energia é realizada 
em um computador quântico, enquanto a minimização em 
relação aos parâmetros  é conduzida por um algoritmo θ
clássico. Esse ciclo quântico-clássico é repetido 
iterativamente até a convergência da energia.1,2,6 

 

Para sistemas moleculares, o Hamiltoniano 
eletrônico é expresso em segunda quantização, 
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(7) 
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em que ​ e  são operadores de criação e aniquilação 𝑎
𝑝
† 𝑎

𝑝

fermiônicos, e os coeficientes e correspondem às ℎ
𝑝𝑞

ℎ
𝑝𝑞𝑟𝑠

 

integrais eletrônicas sobre a base escolhida.1 

 

Esses operadores são então mapeados para 
operadores que atuam sobre qubits por meio de 
transformações como Jordan–Wigner ou Bravyi–Kitaev, 
resultando em um Hamiltoniano da forma 

 

 

 𝐻
^

=
𝑘
∑ 𝑐

𝑘
𝑃

𝑘

^

 

(8) 

em que são produtos de matrizes de Pauli. Cada termo 𝑃
𝑘

^
 

pode ser medido separadamente no computador quântico, 
permitindo a reconstrução do valor esperado da energia total. 

 

Para a aplicação do VQE a sistemas moleculares, o 
Hamiltoniano eletrônico, formulado em segunda quantização, 
deve ser convertido em uma forma compatível com a 
implementação em hardware quântico. O Hamiltoniano geral 
é escrito como 
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(7) 

onde os índices p, q, r, s referem-se a spin-orbitais, e os 
coeficientes e são obtidos a partir de integrais de um ℎ

𝑝𝑞
 ℎ

𝑝𝑞𝑟𝑠
 

e dois elétrons sobre uma base finita.1,2,6 

 

Os operadores fermiônicos ​ e  obedecem às 𝑎
𝑝
† 𝑎

𝑝

relações de anticomutação, 

 

           {𝑎
𝑝
, 𝑎

𝑞
†} = δ

𝑝𝑞
, {𝑎

𝑝
, 𝑎

𝑞
} = 0

 

(9) 

o que exige um mapeamento adequado para operadores que 
atuem sobre qubits. Entre os esquemas mais utilizados estão 
as transformações de Jordan–Wigner e Bravyi–Kitaev.1 

 

No mapeamento de Jordan–Wigner, cada operador 
fermiônico é associado a uma cadeia de operadores de Pauli, 
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(10) 

 

Após o mapeamento, o Hamiltoniano assume a forma 

 

 𝐻
^

=
𝑘
∑ 𝑐

𝑘
𝑃

𝑘

^

 

(8) 

em que  são produtos tensoriais de matrizes de Pauli {I, X, 𝑃
𝑘

^

Y, Z} e  são coeficientes reais. Essa decomposição permite 𝑐
𝑘

que o valor esperado da energia seja obtido como a soma dos 
valores esperados de cada termo individual.1 

 

A escolha do ansatz é um dos aspectos mais críticos 
do VQE, pois determina a qualidade da aproximação ao 
estado fundamental e a complexidade do circuito quântico. 
Em aplicações químicas, um dos ansätze mais estudados é o 
Unitary Coupled Cluster (UCC), que estabelece uma conexão 
direta com métodos clássicos de estrutura eletrônica.12,15 

 

No formalismo UCC, o estado variacional é 
construído a partir do estado de Hartree–Fock como |ψ

𝐻𝐹
⟩ 

 

 |ψ θ( )⟩ = 𝑒𝑇
^
(θ)−  𝑇†̂(θ) |ψ

𝐻𝐹
⟩

 

(11) 

onde é o operador de excitação, definido como 𝑇
^
 

 

 𝑇
^
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𝑖,𝑎
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𝑖
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𝑎
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+
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𝑏
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(12) 

Aqui, os índices i, j referem-se a orbitais ocupados, 
enquanto a, b correspondem a orbitais virtuais. Na prática, o 
operador é truncado em excitações simples e duplas, 
originando o ansatz UCCSD.3,12 
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A natureza unitária do operador exponencial garante 
a preservação da normalização da função de onda, mas 
introduz desafios computacionais, pois a implementação 
direta da exponencial requer a decomposição em circuitos 
quânticos por meio de fórmulas como a expansão de 
Trotter–Suzuki. O número de termos cresce rapidamente com 
o tamanho do sistema, impondo limitações práticas em 
dispositivos NISQ.11 

 

A otimização dos parâmetros θ é realizada 
classicamente, com base nas energias medidas no computador 
quântico. Diversos algoritmos de otimização podem ser 
empregados, incluindo métodos baseados em gradiente, 
métodos sem derivadas e algoritmos estocásticos.1,2 

 

Um desafio importante do VQE está associado à 
paisagem de otimização, que pode apresentar regiões planas 
conhecidas como barren plateaus, nas quais o gradiente da 
função custo se torna exponencialmente pequeno com o 
número de qubits.2 Além disso, o ruído experimental afeta 
diretamente a precisão das medições, aumentando a variância 
estatística e dificultando a convergência do algoritmo.1 

 

Outro aspecto crítico é o custo de medições. Como o 
Hamiltoniano é decomposto em um grande número de termos 
de Pauli, a estimativa precisa da energia total pode exigir um 
número elevado de execuções do circuito quântico, o que 
impacta a viabilidade prática do método.1 

 

Apesar dessas limitações, o VQE permanece como 
uma das abordagens mais promissoras para a química 
quântica em dispositivos NISQ, servindo também como 
plataforma para o desenvolvimento de técnicas de mitigação 
de erros e novos ansatz variacionais. 

 
Conclusões 

O Variational Quantum Eigensolver representa um 
marco importante na interface entre química quântica e 
computação quântica. Fundamentado no princípio variacional 
da mecânica quântica, o VQE permite reformular o problema 
da estrutura eletrônica como uma tarefa de otimização híbrida 
quântico-clássica, compatível com as limitações do hardware 
quântico atual. 

Embora ainda não exista uma demonstração clara de 
vantagem quântica para sistemas quimicamente relevantes, os 
avanços recentes em ansatz, estratégias de otimização e 
mitigação de erros indicam um caminho promissor para 
aplicações futuras. No contexto do centenário da mecânica 
quântica, o desenvolvimento de algoritmos como o VQE 
ilustra como conceitos formulados há um século continuam a 
inspirar novas abordagens para problemas fundamentais da 
química. 

À medida que dispositivos quânticos mais robustos e 
escaláveis se tornem disponíveis, espera-se que o VQE e seus 
sucessores desempenhem um papel crescente na modelagem 
de sistemas moleculares complexos, ampliando as fronteiras 
da química computacional. 
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